
J .  Fluid Mech. (19723, vol. 51, part 2, pp.  221-231 

Printed in Great Britain 
221 

Cavity flows driven by buoyancy and shear 
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Department of Thermal Engineering, Cornell University, Ithaca, New York 

(Received 2 April 1971) 

Fluid motion driven by the combined effects of a moving wall and natura 
convection is examined for rectangular cavities with heightlwidth ratios of 
8 ,  1 and 2. The Reynolds number and Prandtl number are held fixed a t  Re = 100 
and Pr = 1 ; the Grashof number is varied over the range of values Gr = 0, 5 lo4, 
5 lo6. Plow and temperature fields obtained from numerical solutions of the 
Navier-Stokes equations reveal a marked influence of buoyancy for the larger 
aspect ratios when Gr = 5 lo* and the dominance of buoyancy for all aspect 
ratios when Gr = _+ lo6. Results are compared with !earlier work where possible 
and some observations are offered on the convergence of the numerical solutions. 

1. Introduction 
This study examines fluid motion generated in a rectangular cavity by a 

moving upper wall. In  contrast to previous work, the moving wall is maintained 
at a temperature different from the remaining walls of the cavity and natural 
convection is permitted. The resulting fluid motion is driven by the combined 
effects of wall shear and buoyancy. Such a cavity simulates a lubricating groove 
between sliding plates or, approximately, the separated flow in a surface cavity 
with an external stream flowing over it. 

Cavity flows generated by a moving wall in the absence of buoyancy effects 
have been studied for a wide range of Reynolds numbers. Experimental results 
are reported by Pan & Acrivos (1967), Weiss & Florsheim (1965) and Mills (1965) 
for cavities of several aspect ratios (heightlwidth) and analytical results are 
available for Reynolds numbers which are either very low (Pan & Acrivos 1967; 
Weiss & Florsheim 1965) or very high (Batchelor 1956; Squire 1956). For flows 
in which both viscous and inertia terms are important (intermediate Reynolds 
numbers) numerical solutions of the Navier-Stokes equations have been 
required. Recent work is summarized by Donovan (1970) and Greenspan (1969); 
earlier work has been presented by Mills (1965), Simuni (1964) and Kawaguti 
(1961). The accuracy of numerical solutions is discussed by Gosman et al. (1969) 
and Burggraf (1966) for the case of a square cavity. Natural convection flows in 
a rectangular cavity with stationary, non-isothermal walls are of interest for 
heat-transfer calculations; a summary of pertinent work is presented by Newel1 
& Schmidt (1970). 

The present study had its origins in a graduate course on numerical fluid 
dynamics in which the cavity problem, with and without buoyancy, constituted 

& 
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the final examination. Surprisingly, results revealed that flows driven by the 
combined effects of buoyancy and shear were quite different from those driven 
by the separate effects. The study was consequently extended to a sequence of 
finer computing grids and to a range of buoyancy parameters. Each student 
wrote his own computing algorithm and applied it to a number of cases for which 
results were desired. Results were overlapping. The purpose of presenting the 
work here is threefold: first, to illustrate flows driven by both buoyancy and 
shear; second, to present some observations on convergence of the numerical 
method; third, to demonstrate that numerical solutions of complex flow prob- 
lems may be obtained with a modest effort (a one-semester effort being considered 
modest). 

2. Problem formulation 
Consider a two-dimensional cavity of width d and height h in which the upper 

wall moves across the cavity from left to right at  a constant speed U .  Erect an 
x, y co-ordinate system at the lower left corner of the cavity, with y vertical. 
The upper wall is at temperature and the remaining walls are at temperature 
To. Using d, U and (TI - To) as reference length, velocity and temperature, the 
governing equations in a vorticity-stream function formulation become: 

V2T, 
aT 1 
-+V.  (uT) = - 
at Re Pr 

aw GraT  1 
at Re2 ax Re -+v. ( u w )  = --+-v2 w ,  

A1 quantities are dimensionless. Parameters appearing in the problem are the 
Reynolds, Grashof and Prandtl numbers, defined as 

Re = Ud/v,  Gr = gP(T, - To) d3/v2, Pr = v / K ,  (5) 

where J/ = kinematic viscosity, K = thermal diffusivity, ,B = volume thermal 
expansion coefficient and g = acceleration of gravity (directed downward). All 
properties are constant except for density in the buoyancy term (the Boussinesq 
approximation). 

The problem is cast in time-dependent form for convenience in the numerical 
computation. Initial conditions are arbitrary and were typically taken to be a 
fluid at rest. Boundary conditions are those appropriate to impermeable no-slip 
walls (ux = wu = 0, except at the moving wall, where uz = 1). 

Equations (1) to (4) with appropriate boundary conditions are solved by an 
explicit time marching technique. Forward time and central space differences 
are used except for the convection terms in (1) and (2) for which a special three- 
point non-central difference is employed. Details of the technique are provided 
by Torrance & Rockett (1969). The calculation proceeds by advancing T and w 
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with difference forms of (1) and (2). Equation (3) is solved by the method of 
successive over-relaxation for the new 1G. field, which is then used to obtain the 
velocities (from difference forms of (4 ) )  and the wall vorticity (which requires 
the velocity boundary conditions). Stability of the scheme follows by restricting 
the time step; no restrictions are imposed on the spatial mesh. All fields are 
current and the calculation can proceed with a further time advancement. 

3. Results 
This investigation covers a range of Grashof numbers, Gr = 0,  f lo4, & lo6, 

and a range of cavity aspect ratios, hld = &, 1, 2. A Prandtl number typical of 
gases was assumed, Pr = 1, and the Reynolds number was held fixed a.t 
Re = 100. 

The numerical solution procedure yielded the entire flow transient. The final 
flows were always steady and the same final flow was obtained using different 
initial data. Since the transients were always smooth transitions from one field 
to another there is no need to present them here. Instead, only the h a 1  steady- 
state flows will be considered. Those interested in the transients are referred to 
Donovan (1 970). 

3.1. Steady-state streamline and temperature fields 

Computed flow and temperature fields are illustrated in figures 1-3. Streamlines 
and isotherms were obtained by interpolation between grid points and the @ 
and T values are indicated. The outer boundary corresponds to @ = 0,  the moving 
wall to T = 1, and the stationary walls to T = 0. The locations of interior maxima 
or minima of the @ field are shown by crosses in all figures. Negative and positive + values correspond to clockwise and counter-clockwise circulation respectively. 

Figure 1 illustrates the effect of buoyancy on the flow in cavities of three 
different aspect ratios. Figure 1 (a)  corresponds to Gr = lo4, figure 1 ( b )  to 
Gr = 0 and figure 1 ( c )  to Gr = - lo4. The algebraic sign of Gr is determined by the 
product g,8(T1 - To). With gravity directed downward and p positive (true for 
most fluids) the case Gr > 0 corresponds to a hot upper wall and the case 
Gr < 0 to a cold upper wall. For Re = 100 and lGrl = lo4, the coefficient GrRe-= 
of the buoyancy term in the vorticity equation (2) is of unit order. The contribu- 
tion of buoyancy to the vorticity is therefore O( 1). The contribution of wall shear 
to vorticity is found from detailed analysis of the case Gr = 0 to be O(10) near 
the moving wall and significantly less in the lower parts of the cavities, especially 
those of larger aspect ratios. It is in the bottom of the larger aspect ratio cavities 
that wall shear and buoyancy effects become of the same magnitude (see figure l), 
as indicated by the stronger influence of buoyancy on the flows. 

Results for Gr = 0 (figure 1 ( a )  ) are included primarily for comparison purposes. 
A single primary eddy exists for hld = + and 1, and a secondary eddy 
appears for hld = 2. Small corner eddies appear for all cases. Results given by 
Burggraf (1966) for a square cavity using a fine mesh are virtually coincident 
with those given here, as measured by the magnitude of the circulation, location 
of the vortex centre, and the appearance and shape of the streamlines (including 
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corner eddies). Burggraf concluded that a fine mesh is required to  achieve 
quantitative results. As noted in the next section, however, the present numerical 
method yields significantly better results for a given mesh spacing than does 
Burggraf’s method. 

The mesh increments used here (Ax = Ay = 0.05 for h/d = 1 and 2, Ax = 0.05, 
Ay = 0.025 for hid = &) are believed to  yield quantitative information. Velocity 
profiles and streamlines for h/d = 4 and 1 from this study are in very close agree- 
ment with the work of Donovan (1970) and in fair agreement with the work of 
Mills (1965) and Kawaguti (1961), who used comparatively coarser mesh spacings. 

FIGURE 2. Steady-state streamline fields for cavities with Re = 100 and Pr = 1. (a) 
Gr = lo8, ( b )  Gr = - loa, h/d = +, 1 for the upper and lower pairs of figures respectively. 

The effect of a heated upper wall, Gr = lo4 (figure 1 (a)), is to  enhance the left 
corner eddy and to  diminish both the right corner eddy (which is no longer 
discernible) and the strength of the primary eddy. Warm buoyant fluid tends to 
remain near the top. A cooled upper wall, Gr = - lo4 (figure 1 (c)), has the 
reverse effect. The primary circulation increases as cold fluid is accelerated 
toward the bottom, and the right corner eddy grows as the cooler interior fluid 
is acceleratedvertically near thewarmer walls. For the tall cavity alocal minimum 
in the stream function develops near the bottom. 

Figure 2 presents streamlines for Gr = & 106 for h/d  = 4 and 1. Circulation is 
decreased below that shown in figure 1 for Gr = lo6, whereas the reverse is true 



Cavity flows driven by buoyancy and shear 227 

15-2 



228 K .  Torrance et al. 



CavityJEows driven by buoyancy and shear 229 

for Gr = - 106. In  each case shown in figure 2 two approximately equal eddies 
develop. For a pure buoyancy flow without a moving wall, two symmetric eddies 
would be expected; it thus appears that buoyancy effects dominate the flows. 
The streamlines near the top are distorted to accommodate the moving wall. 
The influence of buoyancy at  lGrl = lo6 is to be expected, of course, since the 
coefficient GrRe-2 of the buoyancy term is of O(lO0). 

Temperature fields are shown in figure 3. Results in figure 3(b)  (Gr = 0) and 
figures 3 (a ,  iii), 3 (c, iii) (h/d = 2) correspond to the streamline fields given in 
figure 1. The remaining temperature fields (figures 3 (a ;  i, ii), ( b ;  i, ii) for h/d = 4 
and 1) correspond to the streamline fields at  Gr = & lo6 given in figure 2. This 
method of presentation is employed to conserve space, since the temperature 
fields for all cavities at Gr = 0, & lo4 were very similar. This is apparent from 
inspection of resdts for h/d = 2, which show the largest variation of the iso- 
therms with Gr of all the cavities. A given isotherm moves towards the top for 
Gr = lo4 and towards the bottom for Gr = - lo4 as the fluid circulation is 
retarded or enhanced respectively. Although the temperature fields are remark- 
ably similar the corresponding streamlines are not. 

Temperature fields for h/d = 8 and 1 show a striking variation for Gr = 0, 
f lo6 which correlates closely with the corresponding flow patterns. For 
Gr = lo6, temperature stratification is apparent, whereas for Gr = - lo6, 
buoyancy is effective in stimulating circulation. The temperature field in the 
square cavity at  Gr = 0 may be compared with similar results of Burggraf (1966). 
There is a very slight difference in isotherms near the top of the cavity for the 
two methods. This may be due, in part, to the failure of Burggraf’s method to 
satisfy energy conservation. This is discussed in the next section. 

3.2. Convergence of the numerical method 

A number of mesh sizes (Ax, A y )  were employed and it is possible to check the 
convergence of the numerical results. Such a check is presented in figure 4, 
which displays the minimum value of stream function within the mesh versus 
 AX)^. For all cases Ax = Ay. The figure pertains to the case Re = 100, Pr = 1 
and Gr = 0,  but results are similar for other values of Gr. Results from the present 
study are shown with open circles and open squares for aspect ratios of one and 
two respectively. Data of Burggraf (1966) for an aspect ratio of one are shown 
by crosses. 

Tn the method of presentation used in figure 4, results for a numerical method 
which is correct to second order (i.e. O ( A X ) ~ )  should be described by a straight 
line. A linear relation is apparent for Burggraf’s method and the present method, 

at  least at  small mesh increments. For larger mesh increments some deviation 
is expected and is observed. This is due in part to the fact that the quantities 
being compared did not occur at precisely the same spatial location for all grids. 
Note that all results tend toward the same limit as (Ax)2 tends t o  zero. 

The observed trend of Burggraf’s data is not surprising because his method is 
formally correct to second order. What is surprising, however, is that the present 
method appears to be correct to the same order. This method employs a special 
formulation of the convection terms which has a formal accuracy of O(Ax). The 
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failure of this truncation error to dominate is only partially explained by the 
generally smaller velocities that exist away from the moving wall. 

Another feature of note in figure 4 is the rate of convergence of the present 
method as compared to Burggraf’s method. Clearly the present method is closer 
to the exact solution at all values of   AX)^. Indeed, a mesh increment of Ax = 0.05 
yields results comparable to a mesh with Ax = 0-028 using Burggraf’s method. 

0.11 I I I I I I 
0.10 

0.09 

I 

Burggraf (1966) :::I ; ,  , , , 1 
0.05 

0 0.010 0.020 0,030 

(Axla 

FIGURE 4. Minimum value of stream function in the cavity for various mesh spacings: 
+, h/d = 1, Burggraf (1966); 0, h/d = 1, present study; 0,  h/d = 1, method of Fromm 
(1964); 0, h]d = 2, present study; m, h]d = 2, method of Fromm (1964). Comparison 
presented for the case Re = 100, Pr = 1, Br = 0. 

From Burggraf’s data, a mesh of the latter size can be expected to yield quanti- 
tative information. Some related observations on the convergence of methods is 
presented in Gosman et at. (1969). 

The principle reason for the apparently better results obtained with the present 
method is the use of the conservation form of the convection terms in equations 
(1) and (2). A finite-difference representation of these terms leads to conservation 
of energy and vorticity within the grid system. Use of the alternate forms u . V T  
and u. V w  (obtained by using the equation of continuity) leads to difference 
representations which do not conserve energy and vorticity within the grid 
system. Implications of conservation are discussed more fully by Torrance & 
Rockett (1969). For comparison, two additional data points obtained by using 
a second-order correct method that conserves energy and vorticity in the con- 
vection terms (see Promm 1964) are shown as a filled circle and a filled square 
for h/d = 1 and 2 respectively. Clearly, the second-order conserving method is 
significantly better than the second-order non-conserving form and is (appa- 
rently) comparable to or slightly better than the present method. Numerical 
stability for Fromm’s method appears to involve a restriction on mesh size 
which may not always be met, for practical reasons. 
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